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Traditional Political Polling

Data collection takes time
Data collection is human-intensive

Poor geographic and temporal coverage

West Virginia 2024 Presidential Election Polls

Harris vs. Trump

Research America 8/30/2024 | 400 LV +4.9%

Michigan 2024 Presidential Election Polls

Instantly compare a poll to prior one by same pollster

Harris vs. Trump

Source Date Sample Harris
Average of 23 Pollst
FAL [ Mainstrest 11/04/2024 7131V
_» Emerson College /0402024 | 790 LV £3.4%
) Research Co. 11/04/2024 | 450 LV +4.6%
1 InsiderAdvantage 11/03/2024 | 800 LV £3.7%
' Trafalgar Group 10312024 | 1,079 LV +2.90%
) MIRS / Mich. News Source | 11/003/2024 | 585 LV 24%

O NY Times / Siena College | 11/03/2024 | 998 LV £3.7%
Morning Consult 11032024 | 1,108 LV £3%
Atlasintel 1A2/2024 | 1,198 LV £3%
Redfield & Wilton 11/01/2024 | 1,731 LV +2.2%
The Times (UK) / YouGov | 11/01/2024 | 942 LV +3.9%

1 EPIC-MRA 11/01/2024 | 600 LV +43

) Marist Pall 11/01/2024 | 1,214 LV £3.5%
Atasintel 10/3172024 | 1,136 LV £3%
Echelon Insights 103172024 | 600 LV +4 4%
MIRS / Mich. News Source | 10/31/2024 | 1,117 LV £2 5%

) UMass Lowell 10/3172024 | 600 LV +4.5%
Washington Post 10/31720:24 | 1.003 LV £3.7%

) Fox News 10/30/2024 | 988 LV +3%

) CNN 10/3072024 | 726 LV £4.7%

) Suffolk University 10/30/2024 | 500 LV +4.4%
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Web Browsing for Political Polling

= (Canwebsite visits predict political leanings? Goo g]e

= Example - news websites

. More data NY Times |

= Fully automated Fox News

Google

NY Times

Fox News -




Prior Work

= Web browsing behavior can predict voting results
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=  Quantifying the 'Comey letter' (Comarela et al.)

= Social media referrals are the best signal

| long

Figure 8: Impact of the ‘Comey letter’ at the state level.



Two Approaches to Political Polling

Traditional Polling
Slow

Expensive

Coarse-grained insights
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Web Behavior Analysis

Immediate

Cheap

Fine-grained insights

What about privacy?




Our Contributions

=  We built a system for securely predicting political preferences from web browsing data
= We collected and analyzed data from almost 8000 unique users

= All analysis took place under MPC



Learning from Label Proportions (LLP)

= Eachuser uploads an unlabeled 1,034-element

vector every day | ‘

= Number of visits to the top 517 sites

=  Number of times referred to the top 517 sites

= Unlabeled vectors are grouped by state
= Each state has a ground-truth label
= Trainonaggregate ground truth




System Design
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Client Plugin

=  Custom-built Chrome plugin to monitor browsing
= Daily data uploads of secret-shared histograms

=  (Client-side secret sharing and encryption

= Implementation is open source
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Webserver

Simplifies interaction with clients
Collects basic metadata

Never sees any private data
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MPC Backend

= Three party computation with an honest majority
= We used and augmented the CrypTen library
= We implemented an algorithm for LLP under MPC
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The Plaintext Algorithm
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Implementation in MPC

= Jnitial label assignment can be performed in plaintext

= Training a logistic regression model is supported by CrypTen

= Computing thresholds requires oblivious sorting

= Updated label assignment and convergence checking use secure comparisons

= Training took 70 minutes

= Code will be open source in the future
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Preliminary Results

Inference (09/01/24)

Inference (10/29/24)
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Lessons Learned and Future Directions
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Data Integrity Matters

= Jnitial trouble with dishonest location reporting
= Validation with IP addresses and geolocation

m Results were mixed

= Fullyverified 15% of users
= Digging deeper on the data

= Users in the sample for longer are more honest

®  Honest users contribute much richer data

Lesson: Validating and enforcing user honesty
should be a priority in future deployments.

Lesson: Our data is surprisingly robust to
dishonest users.
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Strengthening the Threat Model

= AWS as a single point of failure
= Reduce or eliminate trust in the core computation

= Anonymous payments
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Thank You!

sambux@bu.edu
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